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In this discussion, we connect the authors’ elegant proposal to multi-view data, in which multiple
sets of variables (or “views”) are measured on the same observations. Using ideas from Section 4
of Cai et al. (2019), we show that we can exploit a secondary view to improve power for testing on
the first view.

Consider i.i.d. observations of m random variables under two conditions. In condition ` ∈ {1, 2},
observation i ∈ {1, ..., n`} of variable j ∈ {1, ...,m} is given by

(View 1) Xij(`) = µj(`) + εij(`),

where εij(`) is zero-mean, and we suppress the common intercept. The random mean vectors µ(1)
and µ(2) are sparse. Furthermore, for the same individuals, we also observe a second view of m̃
variables,

(View 2) Zik(`) = µ̃k(`) + ε̃ik(`) for k ∈ {1, ..., m̃}.

The mean vectors µ̃(`) are sparse, ε̃ik(`) is zero-mean, and again we suppress the intercept. Suppose
the two views satisfy a hierarchical sparsity constraint: for j ∈ {1, ...,m} and ` ∈ {1, 2},

µ̃σ(j)(`) = 0 =⇒ µj(`) = 0, (1)

where σ(j) maps the jth entry of µ(`) to its parent in µ̃(`); see Figure 1.
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Figure 1: Schematic of (1), with σ(3) = 1.
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Concretely, suppose X(`) and Z(`) contain protein and gene expression measurements, respec-
tively. If transcripts that encode the jth protein are absent (i.e. µ̃σ(j)(`) = 0), then the jth protein
cannot be present (i.e. µj(`) = 0).

Suppose that (µj(1), µ̃σ(j)(1)) is independent of (µj(2), µ̃σ(j)(2)). Further assume that the ran-
dom errors (εij(`), ε̃iσ(j)(`)) are bivariate normal and independent across j, ` and i, and independent
of µ(`) and µ̃(`).

Using the terminology of Cai et al. (2019), the “primary statistic” for testing H0j : µj(1) = µj(2)
is

Tj = Cj
(
X̄j(1)− X̄j(2)

)
for some constant Cj . We consider a pair of “auxiliary statistics,”

Rj = Dj

(
X̄j(1) +

n2Var(εij(1))

n1Var(εij(2))
X̄j(2)

)
, Sj = Ej

(
Z̄σ(j)(1) +

n2Cov(εij(1), ε̃iσ(j)(1))

n1Cov(εij(1), ε̃iσ(j)(2))
Z̄σ(j)(2)

)
,

for some constants Dj and Ej . Rj is the same as T2j in Cai et al. (2019), whereas Sj is constructed
using the second data view. A small value of |Sj | provides evidence for µ̃σ(j)(1) = µ̃σ(j)(2) = 0,
which by (1) suggests that µj(1) = µj(2). In analogy to Proposition 1 in Cai et al. (2019), the
oracle statistic is

T
(j)
OR(tj , rj , sj) ≡ Pr(θ1j = 0|Tj = tj , Rj = rj , Sj = sj) =

f(tj , rj , sj |θ1j = 0)Pr(θ1j = 0)

f(tj , rj , sj)

=
f(tj |θ1j = 0)f(rj , sj |θ1j = 0)Pr(θ1j = 0)

f(tj , rj , sj)
.

Moreover, T
(j)
OR(tj , rj , sj) enjoys the properties in Theorem 3 of Cai et al. (2019). Detailed proofs are

available at https://hugogogo.github.io/paper/cars_discussion_supplement.pdf. If there is

not a one-to-one mapping between σ(j) and j, then T
(j)
OR(tj , rj , sj) must be estimated carefully.
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